6,344 research outputs found

    Statistical Tests for Scaling in the Inter-Event Times of Earthquakes in California

    Full text link
    We explore in depth the validity of a recently proposed scaling law for earthquake interevent time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.Comment: proceedings of Erice conference, 200

    Recurrence intervals between earthquakes strongly depend on history

    Full text link
    We study the statistics of the recurrence times between earthquakes above a certain magnitude MinCalifornia.Wefindthatthedistributionoftherecurrencetimesstronglydependsonthepreviousrecurrencetime in California. We find that the distribution of the recurrence times strongly depends on the previous recurrence time \tau_0.Asaconsequence,theconditionalmeanrecurrencetime. As a consequence, the conditional mean recurrence time \hat \tau(\tau_0)betweentwoeventsincreasesmonotonicallywith between two events increases monotonically with \tau_0.For. For \tau_0wellbelowtheaveragerecurrencetime well below the average recurrence time \ov{\tau}, \hat\tau(\tau_0)issmallerthan is smaller than \ov{\tau},whilefor, while for \tau_0>\ov{\tau},, \hat\tau(\tau_0)isgreaterthan is greater than \ov{\tau}.Alsothemeanresidualtimeuntilthenextearthquakedoesnotdependonlyontheelapsedtime,butalsostronglyon. Also the mean residual time until the next earthquake does not depend only on the elapsed time, but also strongly on \tau_0.Thelarger. The larger \tau_0$ is, the larger is the mean residual time. The above features should be taken into account in any earthquake prognosis.Comment: 5 pages, 3 figures, submitted to Physica

    XMMPZCAT: A catalogue of photometric redshifts for X-ray sources

    Full text link
    The third version of the XMM-Newton serendipitous catalogue (3XMM), containing almost half million sources, is now the largest X-ray catalogue. However, its full scientific potential remains untapped due to the lack of distance information (i.e. redshifts) for the majority of its sources. Here we present XMMPZCAT, a catalogue of photometric redshifts (photo-z) for 3XMM sources. We searched for optical counterparts of 3XMM-DR6 sources outside the Galactic plane in the SDSS and Pan-STARRS surveys, with the addition of near- (NIR) and mid-infrared (MIR) data whenever possible (2MASS, UKIDSS, VISTA-VHS, and AllWISE). We used this photometry data set in combination with a training sample of 5157 X-ray selected sources and the MLZ-TPZ package, a supervised machine learning algorithm based on decision trees and random forests for the calculation of photo-z. We have estimated photo-z for 100,178 X-ray sources, about 50% of the total number of 3XMM sources (205,380) in the XMM-Newton fields selected to build this catalogue (4208 out of 9159). The accuracy of our results highly depends on the available photometric data, with a rate of outliers ranging from 4% for sources with data in the optical+NIR+MIR, up to \sim40% for sources with only optical data. We also addressed the reliability level of our results by studying the shape of the photo-z probability density distributions.Comment: 16 pages, 14 figures, A&A accepte

    GALEX measurements of the Big Blue Bump as a tool to study bolometric corrections in AGNs

    Full text link
    Active Galactic Nuclei emit over the entire electromagnetic spectrum with the peak of the accretion disk emission in the far-UV, a wavelength range historically difficult to investigate. We use here the GALEX (Galaxy Evolution Explorer) Near-UV and Far-UV measurements (complemented with optical data from Sloan Digital Sky Survey (SDSS) and XMM-Newton X-ray spectra) of a sample of 83 X-ray selected type 1 AGN extracted from the XMM-Newton Bright Serendipitous Survey to study their spectral energy distribution (SED) in the optical, Near and Far-UV and X-ray energy bands. We have constrained the luminosity of the accretion disk emission component and calculated the hard X-ray bolometric corrections for a significant sample of AGN spanning a large range in properties (z, L(x)).Comment: 2 pages, 2 figures, To appear in refereed Proceedings of "X-ray Astronomy 2009: Present Status, Multi-Wavelength Approach and Future Perspectives", Bologna, Italy, September 7-11, 2009, AIP, eds. A. Comastri, M. Cappi, and L. Angelin

    Mixing of rescaled data and Bayesian inference for earthquake recurrence times

    No full text
    International audienceThe limits of a recently proposed universal scaling law for the probability distributions of earthquake recurrence times are explored. The scaling properties allow to improve the statistics of occurrence of large earthquakes over small areas by mixing rescaled recurrence times for different areas. In this way, the scaling law still holds for events with M?5.5 at scales of about 20km, and for M?7.5 at 600km. A Bayesian analysis supports the temporal clustering of seismicity against a description based on nearly-periodic events. The results are valid for stationary seismicity as well as for the nonstationary case, illustrated by the seismicity of Southern California after the Landers earthquake

    On Self-Organized Criticality and Synchronization in Lattice Models of Coupled Dynamical Systems

    Full text link
    Lattice models of coupled dynamical systems lead to a variety of complex behaviors. Between the individual motion of independent units and the collective behavior of members of a population evolving synchronously, there exist more complicated attractors. In some cases, these states are identified with self-organized critical phenomena. In other situations, with clusterization or phase-locking. The conditions leading to such different behaviors in models of integrate-and-fire oscillators and stick-slip processes are reviewed.Comment: 41 pages. Plain LaTeX. Style included in main file. To appear as an invited review in Int. J. Modern Physics B. Needs eps

    Stability of Spatio-Temporal Structures in a Lattice Model of Pulse-Coupled Oscillators

    Full text link
    We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By studying the intrinsic dynamics of each member of the population and their mutual interactions we observe the emergence of either spatio-temporal structures or synchronized regimes. We perform a linear stability analysis of these structures.Comment: 15 pages, 2 PostScript available upon request at [email protected], Accepted in Physica

    Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach

    Get PDF
    The 70-month Swift/BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies (>10 keV) containing about 800 Active Galactic Nuclei. We explore its content in heavily obscured, Compton-thick AGN by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density for each source. We find 53 possible Compton-thick sources (with probability 3 to 100%) translating to a ~7% fraction of the AGN in our sample. We derive the first parametric luminosity function of Compton-thick AGN. The unabsorbed luminosity function can be represented by a double power-law with a break at L2×1042L_{\star} 2 \times 10^{42} ergs s1\rm ergs~s^{-1} in the 20-40 keV band.Comment: 13 pages, 9 figure

    Correlations and invariance of seismicity under renormalization-group transformations

    Get PDF
    The effect of transformations analogous to those of the real-space renormalization group are analyzed for the temporal occurrence of earthquakes. The distribution of recurrence times turns out to be invariant under such transformations, for which the role of the correlations between the magnitudes and the recurrence times are fundamental. A general form for the distribution is derived imposing only the self-similarity of the process, which also yields a scaling relation between the Gutenberg-Richter b-value, the exponent characterizing the correlations, and the recurrence-time exponent. This approach puts the study of the structure of seismicity in the context of critical phenomena.Comment: Short paper. I'll be grateful to get some feedbac
    corecore